
A Report on
Inter-Process Communication (IPC)

in Support of
Landsat 7 LPS

Interface Design Document

Cliff Liu

Apr. 4, 1995

Abstract:

IPC (Inter-Process Communication) refers to the methods of
sending data from one process to another asynchronously (the
synchronous data passing for process and function invocation is via
arguments). IPC mechanisms generally include files, pipes, FIFOs,
message queues, shared memory, semaphores, and signals. Recent
evolution of light-weight processes (a.k.a. threads) which use shared
global data between the related processes provide more efficient
inter-process communication. An example of that is SGI's sproced
processes in multi-threads parallel programming.

Introduction:

This report concentrates on the general IPC mechanisms which
are supported by most Unix systems (including SGI). These IPCs are
commonly referred to as the traditional Unix IPCs, System V IPCs
and BSD sockets. Being an application program interface (API) to the
network protocols such as TCP, the BSD Socket is normally used for
network communications between computers. Please note that even
though database with SQL query interface has been determined by
LPS as one of the IPC mechanisms, its applications should be confined
to the less time-critical tasks such as report generation due to its
slow speed. The description of database interface is not included in
this report. Also note that semaphores and signals are generally
used to inform another process of a condition instead of passing data.
They are normally used with other IPC mechanisms such as the
shared memory or message queues.

 The characteristics and system calls involved for each IPC
mechanism are listed below, followed by performance comparisons,
portability issues and conclusions. The goal of this report is to
provide readers a general knowledge of IPC mechanisms and as a
reference in selecting the most efficient IPC method. But keep in
mind that the IPC method of choice may be affected by the software
architecture and design considerations.

Traditional Unix IPCs:

* Files
- A process writes to a file which will be read by another

process.
- The processes do not need to be related.
- It does not require IPC system calls, most portable.
- Has potential concurrent access problem - one process

reads from a file while another is writing to it. Use file
locking or record (range) locking to prevent this

- It is a slower IPC but may be necessary for applications
that involve large data files.

- Use open(), lseek(), read(), write(), lockf() system calls.

* Pipes
- Pipe is a one-way data string I/O: the output of one

process is sent directly to the input of the other process.
Use two pipes when two-way data flow is desired.

- Used for related processes such as parent and child or
children of the same parent.

- Read and write are not guaranteed to be atomic, they
can be interrupted and have the buffer intermixed with
data from multiple readers or writers. This makes pipes
unsuitable for more than two processes.

- Use pipe(), read(), write() system calls.

* FIFOs (AKA. Named pipe)
- Similar to a pipe, FIFO is also a one-way data string I/O.

however, it has a name associated with it to allow
unrelated processes to access it.

- Atomicity is guaranteed but this makes FIFOs slower
than pipes (it may not to be true if a process writes
more data then a pipe can hold).

- Use mknode(), open(), read(), write(), close() system
calls.

* Signals
- A signal is a condition that can be sent to a process by

the kernel or another process. A process provides
signal handler to perform an action or allows default
action to be taken. It can also mask out signals (other
than SIGKILL and SIGSTOP).

- Signal is asynchronous, a program can receive a signal
between any two instructions.

- A process can send signals to processes in the same
group, with the same effective user ID, in another
group. A superuser can send signals to all processes. No
shared common kernel data structure is needed for a
signal.

- signal() and kill() are ANSI C signal system calls. POSIX
also uses kill(), but it replaces signal() with a set of
functions (sigaction, sigprocmask,etc.)

System V IPCs:

- System V IPCs Include Message queues, Semaphores,
shared memory

- The resource used by message queues, semaphore and
shared memory will remain as a kernel data structure
even after the process that created the resource
terminates.

- All System V IPCs are system wide, any process can
access an IPC channel identified by an integer ID.

-Use ipcs command to check the System V IPC
configuration - the information stored in the kernel for
each established IPC channel.

* Message queues
- Messages queues allow processes to send a structure

(instead of streams used by pipes and FIFOs) to other
unrelated processes.

- A process can either wait for a message or use a signal.

- All message queues are stored in the kernel, and have
an associated message queue identifier (msgid).

- Many processes can send a message to the same
message queue. The message type can be used to
indicate which of the several different processes is the
originator of a message (or the message priority for LPS'
Status Messages). The receiving process can take off the
first message of a selected message type.

- Use msgget () to create a new message queue or access
an existing one.

- Use msgsnd() and msgrcv() to send and receive a
message.

- Use msgctl() to remove or modify a message queue data
structure from the kernel.

* Semaphores
- A semaphore is used for resource synchronization. In its

simplest form, i.e. a binary semaphore of value 0 or 1 is
used to protect a resource from being accessed by
another process until the process currently using that
resource releases it. A more general semaphore is a
resource counter that indicates the number of available
resources.

- System V implements semaphores in the kernel to
guarantee atomicity.

- Use semget() to create or access an existing semaphore.
- Use semctl() to initialize or remove a semaphore.
- Use semop() to allocate or release resources controlled

by a semaphore.

* Shared memory
- Shared memory is faster than any other method

because it requires no data transfer. For pipes, FIFOs or
message queues, data is copied from the sender's buffer
into the kernel, and then copied from the kernel to the
reader's buffer.

- It allows any number of processes, whether related or
not, to access the same data segment as part of the
virtual address space of each process.

- The steps in using shared memory:
1. Use shmget() to create a shared memory in the

kernel.

2. Determine a safe place in each process to attach
the shared memory region.

3. Use shmat() to attach the shared memory to a
process.

4. Use semaphores to synchronize concurrent access
to the shared memory.

5. Detach the shared memory region.

BSD sockets:
- It provides application interface to network protocols

(Unix domain or Internet domain - TCP/IP). The data
transfer can be connection-oriented or connectionless.

- Two processes wishing to communicate set up a pair of
sockets to create a communication channel between
them. It allows communication between processes
running on the same computer (Unix domain protocol)
or on different computers on a network (Internet
domain protocol).

- BSD implements pipes using sockets to connection-
oriented Unix domain protocol (That's one reason why
pipes may be slower due to the network overhead).

- Both computers on the network must have socket
facility for this method to work.

- Asynchronous I/O can be used to have the kernel
inform the process via a SIGIO signal when data is
arrived at a socket.

- Following is a client-server example using sockets and
the connection-oriented protocol :

- Server implementation:

1. Call socket() to create a socket with a protocol
type. It returns a socket descriptor

2. Initialize a pointer and the content of the sockaddr
structure. (AF_UNIX - two processes on the same
computer)

3. Assign a name to socket and register server's
address - bind().

4. Listen for connection requests from clients -
listen().

5. Wait for connection request from client, receive
client's address and create a new socket for the
client - accept().

6. Fork a child to serve the client if it is a concurrent
server, otherwise serve the client itself.

7. Close the socket when service is complete - close().

- Client implementation:

1. Same as 1&2 above
2. Establish connection with server via connect() and

register client's address.
3. Use read() and write(), or use send(), sendto(),

recv(), recvfrom().

Portability:

Despite using the fairly standard System V IPC methods
described above, changes to the IPC programs may still be necessary
when porting an application to another system because of the
difference in the kernel data structure and the IPC tunable
parameters. For example, SGI supports up to 32K bytes per message
which is normally 8K in other Unix systems. The portability issues
for inter-process communication will be fully defined in the POSIX.4
Real-Time system standard.

In addition, some of the system calls described in this report
are not POSIX.1 compliant, for example the ANSI C signal() is
replaced by sigaction() in POSIX.1, but both of them are currently
portable.

It is obvious that use of system specific IPC methods such as
SGI's Arena shared memory and multithreads programming will
require significant code changes for porting.

Performance:

This section presents the results of two IPC performance
studies conducted by Ron Leach in the "Advanced Topics in UNIX"
and by CSC PACOR II team on the RTOS software.

 Ron Leach compared efficiency of the various IPC mechanisms
on three different platforms. He found out that shared memory was
the fastest IPC among all three systems when used without
synchronization control. But most concurrent processes require some

sort of synchronization to protect data integrity. The shared memory
with semaphore performed slower than pipes, FIFOs and message
queues, especially when a large amount of data (1000 byte) is
passed. This was probably caused by a context switch due to the time
for mencopy() to copy 1000 bytes was longer than the allocated
time slice for the process. An alternate code design and a careful
scheduling should be able to avoid a context switch.

Also common to all systems is that files always performed
slowest. Following is a brief summary of the top IPC performers on
each system.

AT&T 3B2/310 (SVR3) - To transfer a small amount of data (
10 - 100 bytes) , message queue was the fastest, followed by
FIFOs, pipes. The difference in performance between pipes and
FIFOs was small. However, when transferring 1000 bytes of
data, pipes and FIFOs outperformed message queue.

Sun 3/60 (SunOS 3.5)- Again message queues outperformed
other IPC methods, and it remains true even with larger data.
FIFOs were faster than pipes on Sun.

Sun SPARC 2 (Solaris 1.1) - Same orders as above, i.e. message
queue, FIFOs and pipes. Followed closely by the shared
memory with semaphores which performed better than the
other two systems.

CSC PACOR II team conducted an inter-process communication
performance study of the IPC mechanisms such as FIFOs, BSD sockets
and message queues to communicate between RTOS tasks during the
software critical design phase. The tests were not performed in a
highly controlled environment as its goal was to get a quick
comparison of the IPC capabilities. Note that the message queue test
was not run for data greater than 1K bytes for both tests due to size
limitation (SGI's message size can be up to 32K bytes).

The tests were performed on two different Sun SPARC workstations
running two versions of the Sun OS - 4.1.2 and 5.1. The results of the
tests on Sun OS 4.1.2 showed that both message queues and FIFOs
had better throughput than sockets. The tests running on Sun OS 5.1
including TLI showed a similar result that message queue came first
(up to 1K data size), followed by sockets and TLI, then the FIFOs.

Conclusions:

The performance of IPC mechanisms can vary with different
platforms and operating systems. There is no known performance
study performed on the SGI IRIX. But it is safe to expect better
performance from the newer Unix systems in which IPC mechanisms
are fine-tuned.

Based on the above performance studies and the characteristics
of each IPC mechanism, the SVR4 shared memory with
synchronization control and the message queues seem to be the best
choice as the IPC methods between LPS subsystems. As for the
interface between LPS and LP DAAC, the BSD sockets and FTP (not
described in the report) may be used. This interface depends on the
forthcoming ICD between LPS and LP DAAC.

The communication between LPS subsystems will be either
one-writer, one-reader (eg. RDPS-MFPS) or one-writer, many-reader
(eg. MFPS-PCDS/IDPS) fashion. Synchronization of the shared
memory for the former can be achieved using a simple data flag to
avoid the overhead of kernel processing, or using semaphores for the
latter. Besides better performance, other advantages of message
queues over pipes and FIFOs are that they support structure passing
instead of passing byte strings and that the message type can be
used as a subsystem ID or message priority. The LPS Status Messages
and some MACS directives are good candidates for message queues.

When time critical code demands the use of SGI's light-weight
processes to run multiple threads in parallel, the shared data will be
the most efficient IPC method.
 A final note, the OSF Distributed Computing Environment (DCE)
to be used by the Renaissance project as IPC mechanism is not
available for SGI platform. The remote procedure calls (RPC) however
may be considered as an alternative interface between LPS and LP
DAAC.

